1 Role of activated carbon features on the photocatalytic degradation of phenol

نویسندگان

  • Leticia F. Velasco
  • José B. Parra
  • Conchi O. Ania
چکیده

In this work we have investigated the role of a porous carbon material used as photocatalyst itself, and catalyst support in a carbon/titania composite towards the photodegradation of phenol, and compared the results to that of bare titanium oxide. The immobilization of titania on an activated carbon provoked an acceleration of the degradation rate under UV irradiation, which is likely attributed to the porosity of the carbon support. The identification of the degradation intermediates detected in the solution showed that the presence of the carbon support affects the nature of phenol degradation mechanism through the formation of different intermediates. Additionally, phenol photodecomposition rate over the carbon support outperformed that attained in the carbon/titania composite, suggesting an important self-photoactivity of the carbon support.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic study of the photocatalytic degradation of the acid blue 113 dye in aqueous solutions using zinc oxide nanoparticles immobilized on synthetic activated carbon

Approximately 10-20% of the total dyes in the world is consumed in the textile industry. The present study aimed to investigate the photocatalytic activity of zinc oxide nanoparticles (ZnO) immobilized on synthetic activated carbon in the removal of the acid blue 113 dye from aqueous solutions. This experimental study was conducted in a photo-reactor with the useful volume of one liter. The eff...

متن کامل

Photocatalytic degradation of phenol in water solutions using zno nanoparticles immobilized on glass

Phenol and its derivatives are pollutant compounds that are present in the wastewater of many industries. The objective of this study was to investigate the photocatalytic degradation of phenol in water containing various concentrations of sodium chloride. A laboratory study was conducted to evaluate the performance of UV/ZnO process on the efficiency of phenol removal from saline water with Zn...

متن کامل

A Comparative Study of Photocatalytic Activity of ZnO/activated Carbon Nanocomposites Prepared by Solid-state and Conventional Precipitation Methods

ZnO/activated carbon nanocomposites (ZnO/ACns) were synthesized by applying two different solid-state and precipitation methods. Precipitation method was initiated with zinc chloride and sodium hydroxide as starting materials in the presence of activated carbon. The synthesized sample was calcined at 250 °C for 1 h. The preparation of nanocomposite by solid-state method was accomplished by heat...

متن کامل

Photocatalytic Role of Zinc Oxide Nanoparticles on Synthetic Activated Carbon to Remove Antibiotic from Aquatic Environment

Background & Aims of the Study: The presence of antibiotics in the environment, especially in aquatic environments is a major concern for health and the environment. The advanced oxidation process due to the ease of use, economical advantages and high performance have attracted a lot of attention. The purpose of this study was Evaluating of the photocatalytic role of zinc oxide on s...

متن کامل

Carbon foams as catalyst supports for phenol photodegradation.

A carbon foam using coal tar pitch as precursor was prepared and investigated as support for titanium oxide for the photocatalytic degradation of phenol. The performance of the carbon foam/titania composite was compared to those of unsupported titania and other activated carbon composites from the literature. The photodegradation rate of phenol over the catalysts under UV illumination was fitte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014